Transition metals in legume root nodules: iron-dependent free radical production increases during nodule senescence.
نویسندگان
چکیده
The cytosol from root nodules of soybean, bean, and cowpea contained Fe and Cu capable of catalyzing the formation of highly reactive free radicals. Specific and sensitive assays based on free radical-mediated DNA degradation revealed that most catalytic Fe and Cu were present as small chelates (300-600 Da). The involvement of catalytic Fe in free radical production during nodule senescence, which was induced by exposure of plants to continuous darkness for 2-4 days, was investigated. (i) Free heme remained at a constant and low concentration (1-4% of total nodule heme) during senescence, indicating that it is not an important constituent of the catalytic Fe pool of nodules. (ii) Catalytic Fe of nodule cytosol promoted deoxyribose degradation and linolenic acid peroxidation in reaction mixtures containing physiological concentrations of ascorbate and H2O2. Deoxyribose degradation but not lipid peroxidation required hydroxyl radicals to proceed. (iii) The cytosol from senescent nodules, particularly of bean and cowpea, sustained in vitro higher rates of deoxyribose degradation and lipid peroxidation than the cytosol from unstressed nodules. Both degradative processes were inhibited by the Fe chelator desferrioxamine and were correlated with the content of catalytic Fe in the nodule cytosol. (iv) Although other transition metals (Cu, Mn, Mo, and Ni) were present in significant amounts in the low molecular mass fraction (<3 kDa) of the nodule cytosol, Fe is most likely the only metal involved in free radical generation in vivo. (v) By using dimethyl sulfoxide as a molecular probe, formation of significant amounts of hydroxyl radical was observed in vivo during senescence of bean and cowpea nodules.
منابع مشابه
Proteolytic Activity in Soybean Root Nodules : Activity in Host Cell Cytosol and Bacteroids throughout Physiological Development and Senescence.
Root nodules were harvested from chamber-grown soybean (Glycine max L. Merrill cv Woodworth) plants throughout development. Apparent nitrogenase activity (acetylene reduction) peaked before seeds began to develop, but a significant amount of activity remained as the seeds matured. Nodule senescence was defined as the period in which residual nitrogenase activity was lost. During this time, solu...
متن کاملProteolytic Activity in Soybean Root Nodules 1 ACTIVITY IN HOST CELL CYTOSOL AND BACTEROIDS THROUGHOUT PHYSIOLOGICAL DEVELOPMENT AND SENESCENCE
Root nodules were harvested from chamber-grown soybean (Glycine max L. Merril cv Woodworth) plants throughout development. Apparent nitrogenase activity (acetylene reduction) peaked before seeds began to develop, but a significant amount of activity remained as the seeds matured. Nodule senescence was defined as the period in which residual nitrogenase activity was lost. During this time, solub...
متن کاملDevelopment of a Method for measuring Reactive Oxygen Radicals Levels In Vitro and Study the Effects of Vitamin C and E on Radical Production Reaction
Background: Free radicals and reactive oxygen species(ROS) are the most important factors in formation of oxidative stress reaction. Now, radical damage has been suggested to contribute to a wide variety of diseases such as Alzheimer, atherosclerosis and cancer. Transition metal ions in the presence of the various biomolecules produce these active compounds. The aim of this study is introducing...
متن کاملFunctional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules.
An iron-superoxide dismutase (FeSOD) with an unusual subcellular localization, VuFeSOD, has been purified from cowpea (Vigna unguiculata) nodules and leaves. The enzyme has two identical subunits of 27 kD that are not covalently bound. Comparison of its N-terminal sequence (NVAGINLL) with the cDNA-derived amino acid sequence showed that VuFeSOD is synthesized as a precursor with seven additiona...
متن کاملComplexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties.
The low-molecular-mass fraction of the soybean nodule cytosol contains Fe capable of catalyzing free radical production through Fenton chemistry. A large portion of the pool of catalytic Fe, measured as bleomycin-detectable Fe, was characterized as complexes of Fe with phenolic compounds of three classes: phenolic acids, cinnamic acids, and flavonoids. Many of these compounds, along with other ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 89 19 شماره
صفحات -
تاریخ انتشار 1992